Sketchy understandings: Drawings reveal where students may need additional support to understand scale and abstraction in common representations of DNA
Sketchy understandings: Drawings reveal where students may need additional support to understand scale and abstraction in common representations of DNA
Uminski, C.; Wright, L. K.; Newman, D. L.
AbstractVisual representations in molecular biology tend to follow a set of shared conventions for using certain shapes and symbols to convey information about the size and structure of nucleotides, genes, and chromosomes. Understanding how and why biologists use these conventions to represent DNA is a key part of visual literacy in molecular biology. Visual literacy, which is the ability to read and interpret visual representations, encompasses a set of skills that are necessary for biologists to effectively use models to communicate about molecular structures that cannot be directly observed. To gauge students\' visual literacy skills, we conducted semi-structured interviews with undergraduate students who had completed at least a year of biology courses. We asked students to draw and interpret figures of nucleotides, genes, and chromosomes, and we analyzed their drawings for adherence to conventions for representing scale and abstraction. We found that 77% of students made errors in representing scale and 86% of students made errors in representing abstraction. We also observed about half of the students in our sample using the conventional shapes and symbols to represent DNA in unconventional ways. These unconventional sketches may signal an incomplete understanding of the structure and function of DNA. Our findings indicate that students may need additional instructional support to interpret the conventions in common representations of DNA. We highlight opportunities for instructors to scaffold visual literacy skills into their teaching to help students better understand visual conventions for representing scale and abstraction in molecular biology.