DrugDiff - small molecule diffusion model with flexible guidance towards molecular properties

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

DrugDiff - small molecule diffusion model with flexible guidance towards molecular properties

Authors

Oestreich, M.; Merdivan, E.; Lee, M.; Schultze, J. L.; Piraud, M.; Becker, M.

Abstract

With the cost/yield-ratio of drug development becoming increasingly unfavourable, recent work has explored machine learning to accelerate early stages of the development process. Given the current success of deep generative models across domains, we here investigated their application to the property-based proposal of new small molecules for drug development. Specifically, we trained a latent diffusion model - DrugDiff - paired with predictor guidance to generate novel compounds with a variety of desired molecular properties. The architecture was designed to be highly flexible and easily adaptable to future scenarios. Our experiments showed successful generation of unique, diverse and novel small molecules with targeted properties. The code is available at https://github.com/MarieOestreich/DrugDiff.

Follow Us on

0 comments

Add comment