Topologically protected flatness in chiral moiré heterostructures

Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Topologically protected flatness in chiral moiré heterostructures


Valentin Crépel, Peize Ding, Nishchhal Verma, Nicolas Regnault, Raquel Queiroz


The observation of delicate correlated phases in twisted heterostructures of graphene and transition metal dichalcogenides suggests an inherent resilience of moir\'e flat bands against certain types of disorder. We investigate the robustness of moir\'e flat bands in the chiral limit of the Bistrizer-MacDonald model, applicable to both platforms in certain limits. We show a drastic difference between the protection of the first magic angle and higher magic angles to chiral symmetric disorder such as random higher moir\'e potential harmonics arising, for instance, from lattice relaxation. We find that the first magic angle is topologically protected by a topological index theorem, similar to the protection of the zeroth Landau level of Dirac fermions, whose flatness withstands any chiral symmetric perturbation such as non-uniform magnetic fields. Focusing on the first magic angle of twisted bilayer graphene, our analysis reveals a hidden non-local constant of motion that permits the decomposition of the non-abelian gauge field induced by inter-layer tunnelings into two decoupled abelian ones, underscoring a topological mechanism for band flatness. Through numerical simulations, we further show the strikingly different robustness of flat bands across protected (first) and unprotected (higher) magic angles in the presence of various types of disorder and identify the scattering processes that are enhanced or suppressed in the chiral limit. Interestingly, we find that the suppression of disorder broadening persists away from the chiral limit and is further accentuated by isolating a single sublattice polarized flat band in energy. Our analysis suggests the Berry curvature hotspot at the top of the K and K' valence band in the transition metal dichalcogenide monolayers is essential for the stability of its moir\'e flat bands and their correlated states.

Follow Us on


Add comment