A Silicon Microstrip Detector for Power-Limited and Large Sensitive Area Applications
A Silicon Microstrip Detector for Power-Limited and Large Sensitive Area Applications
Dexing Miao, Zijun Xu, Zhiyu Xiang, Pingcheng Liu, Giovanni Ambrosi, Mattia Barbanera, Mengke Cai, Xudong Cai, Hsin-Yi Chou, Matteo Duranti, Valerio Formato, Maria Ionica, Yaozu Jiang, Liangchenglong Jin, Vladimir Koutsenko, Qinze Li, Cong Liu, Xingjian Lv, Alberto Oliva, Wenxi Peng, Rui Qiao, Gianluigi Silvestre, Zibing Wu, Xuhao Yuan, Hongyu Zhang, Xiyuan Zhang, Jianchun Wang
AbstractA silicon microstrip detector (SSD) has been developed to have state of the art spatial resolution and a large sensitive area under stringent power constraints. The design incorporates three floating strips with their bias resistors inserted between two aluminum readout strips. Beam test measurements with the single sensor confirmed that this configuration achieves a total detection efficiency of $99.8 \, \%$ and spatial resolution $7.6 \, \mathrm{\mu m}$ for MIPs. A double-$\eta$ algorithm was developed to optimize hit position reconstruction for this SSD. The design can be adapted for large area silicon detectors.